Articles

2022

The Mesencephalic Locomotor Region: Multiple Cell Types, Multiple Behavioral Roles, and Multiple Implications for Disease.
Ryczko D.
The Neuroscientist. 2022 [epub ahead of print] https://onlinelibrary.wiley.com/doi/10.1002/cne.25348 

From retina to motoneurons: a substrate for visuomotor transformation in salamanders.
Flaive A, Ryczko D.
J Comp Neurol. 2022 [epub ahead of print] https://onlinelibrary.wiley.com/doi/10.1002/cne.25348 [Preprint bioRxiv PDF] 

2021

Optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus controls locomotion in a mouse model of Parkinson’s disease.
Fougère M, van der Zouwen CI, Boutin J, Neszvecsko K, Sarret P, Ryczko D.
Proc Natl Acad Sci U S A. 2021 [Preprint bioRxiv 2021 PDF]

Emergence of robust self-organized undulatory swimming based on local hydrodynamic force sensing.
Thandiackal R, Melo K, Paez L, Herault J, Kano T, Akiyama K, Boyer F, Ryczko D, Ishiguro A, Ijspeert AJ.
Science Robotics 2021 57:eabf6354 https://robotics.sciencemag.org/content/6/57/eabf6354 PDF

Freely behaving mice can brake and turn during optogenetic stimulation of the Mesencephalic Locomotor Region.
van der Zouwen CI, Boutin J, Fougere M, Flaive A, Vivancos M, Santuz A, Akay T, Sarret P, Ryczko D.
Front Neural Circuits. 2021 15:639900 [DOI: 10.3389/fncir.2021.639900] [Preprint bioRxiv 2020 PDF]

S100β-mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the mouse visual cortex.
Ryczko D, Hanini-Daoud M, Condamine S, Bréant BJB, Fougère M, Araya R, Kolta A.
J Physiol. 2021 599(2):677-707 https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP280501 PDF [Preprint bioRxiv 2020 PDF]

Heterogeneous expression of dopaminergic markers and Vglut2 in mouse meso‐diencephalic dopaminergic nuclei A8‐A13.
Fougère M, van der Zouwen CI, Boutin J, Ryczko D.
J Comp Neurol. 2021 529(7):1273-1292 https://doi.org/10.1002/cne.25020. PDF

2020

Reproducing five motor behaviors in a salamander robot with virtual muscles and a distributed CPG controller regulated by drive signals and proprioceptive feedback.
Knüsel J, Crespi A, Cabelguen JM, Ijspeert A, Ryczko D.
Front Neurorobot. 2020 14:604426 https://www.frontiersin.org/articles/10.3389/fnbot.2020.604426/full

Walking with Salamanders: From Molecules to Biorobotics.
Ryczko D, Simon A, Ijspeert AJ.
Trends Neurosci. 2020 43:916-930. PDF

Descending dopaminergic inputs to reticulospinal neurons promote locomotor movements.
Ryczko D, Grätsch S, Alpert MH, Cone JJ, Kasemir J, Ruthe A, Beauséjour PA, Auclair F, Roitman MF, Alford S, Dubuc R.
J Neurosci. 2020 PDF

Serotonergic modulation of locomotor activity from basal vertebrates to mammals.
Flaive A, Fougère M, van der Zouwen CI, Ryczko D.
Front Neural Circuits. 2020 14:590299. PDF

Patch-clamp recordings in slices of telencephalon, diencephalon and rhombencephalon of salamanders.
Flaive A, Ryczko D.
[Preprint] bioRxiv 2020, https://www.biorxiv.org/content/10.1101/2020.06.10.143487v1. PDF

The serotonin reuptake blocker citalopram destabilizes fictive locomotor activity in salamander axial circuits through 5-HT1A receptors.
Flaive A, Cabelguen JM, Ryczko D.
J Neurophysiol. 2020 123:2326-2342. PDF

Motor Control: Swim Harder, Faster, Stronger.
van der Zouwen CI, Ryczko D.
Curr Biol. 2020 30: R229-R232. PDF

2019

Descending dopaminergic control of brainstem locomotor circuits.
Fougère M, Flaive A, Frigon A, Ryczko D.
Curr Opin Physiol. 2019 08:30-35. PDF

2018

A descending dopaminergic pathway to control movement.
Fougère M, Ryczko D.
Med Sci (Paris). 2018 34(5):386-388.  PDF

2017

Nigral glutamatergic neurons control the speed of locomotion.
Ryczko D, Grätsch S, Schläger L, Keuyalian A, Boukhatem Z, Garcia C, Auclair F, Büschges A, Dubuc R.
J Neurosci. 2017 37(70):9759-9770. PDF

Dopamine and the brainstem locomotor networks: from lamprey to human.
Ryczko D, Dubuc R.
Front Neurosci. 2017 11:295. PDF

2016

A descending dopamine pathway conserved from basal vertebrates to mammals.
Ryczko D, Cone JJ, Alpert MH, Goetz L, Auclair F, Dubé C, Parent M, Roitman MF, Alford S, Dubuc R.
Proc Natl Acad Sci U S A. 2016 113(17):E2440-9. PDF

The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod.
Ryczko D, Auclair F, Cabelguen JM, Dubuc R.
J Comp Neurol. 2016 524(7):1361-83. PDF

Interfacing a salamander brain with a salamander-like robot: Control of speed and direction with calcium signals from brainstem reticulospinal neurons.
Ryczko D, Thandiackal R, Ijspeert AJ.
6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). 1140-7. PDF

2015

Flexibility of the axial central pattern generator network for locomotion in the salamander.
Ryczko D, Knüsel J, Crespi A, Lamarque S, Mathou A, Ijspeert AJ, Cabelguen JM.
J Neurophysiol. 2015 113(6):1921-40. PDF

2013

Forebrain dopamine neurons project down to a brainstem region controlling locomotion.
Ryczko D, Grätsch S, Auclair F, Dubé C, Bergeron S, Alpert MH, Cone JJ, Roitman MF, Alford S, Dubuc R.
Proc Natl Acad Sci U S A. 2013 110(34):E3235-42. PDF

A salamander’s flexible spinal network for locomotion, modeled at two levels of abstraction.
Knüsel J, Bicanski A, Ryczko D, Cabelguen JM, Ijspeert AJ.
Integr Comp Biol. 2013 53(2):269-82. PDF

From lamprey to salamander: an exploratory modeling study on the architecture of the spinal locomotor networks in the salamander.
Bicanski A, Ryczko D, Cabelguen JM, Ijspeert AJ.
Biol Cybern. 2013 107(5):565-87. PubMed Link

Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics.
Bicanski A, Ryczko D, Knuesel J, Harischandra N, Charrier V, Ekeberg Ö, Cabelguen JM, Ijspeert AJ.
Biol Cybern. 2013 107(5):545-64. PubMed Link

The multifunctional mesencephalic locomotor region.
Ryczko D, Dubuc R.
Curr Pharm Des. 2013;19(24):4448-70. PubMed Link

2011

Supraspinal control of locomotion: the mesencephalic locomotor region.
Le Ray D, Juvin L, Ryczko D, Dubuc R.
Prog Brain Res. 2011;188:51-70. PubMed Link

Rhythmogenesis in axial locomotor networks: an interspecies comparison.
Ryczko D, Dubuc R, Cabelguen JM.
Prog Brain Res. 2010;187:189-211. ScienceDirect Link

Axial dynamics during locomotion in vertebrates lesson from the salamander.
Cabelguen JM, Ijspeert A, Lamarque S, Ryczko D.
Prog Brain Res. 2010;187:149-62. ScienceDirect Link

2010

Segmental oscillators in axial motor circuits of the salamander: distribution and bursting mechanisms.
Ryczko D, Charrier V, Ijspeert A, Cabelguen JM.
J Neurophysiol. 2010 104(5):2677-92. PDF

The transformation of a unilateral locomotor command into a symmetrical bilateral activation in the brainstem.
Brocard F, Ryczko D, Fénelon K, Hatem R, Gonzales D, Auclair F, Dubuc R.
J Neurosci. 2010 30(2):523-33. PDF

2008

Organisation of the spinal central pattern generators for locomotion in the salamander: biology and modelling.
Chevallier S, Jan Ijspeert A, Ryczko D, Nagy F, Cabelguen JM.
Brain Res Rev. 2008 57(1):147-61. PubMed Link

2007

From swimming to walking with a salamander robot driven by a spinal cord model.
Ijspeert AJ, Crespi A, Ryczko D, Cabelguen JM.
Science. 2007 315(5817):1416-20.  PDF

2006

Region-dependent regulation of mesoaccumbens dopamine neurons in vivo by the constitutive activity of central serotonin2C receptors.
Navailles S, Moison D, Ryczko D, Spampinato U.
J Neurochem. 2006 99(4):1311-9. PDF